A comprehensive data-driven framework demonstrating 157% return on investment for preventive medicine investments across five major disease areas in the United Arab Emirates.
This framework provides three primary analytical tools for stakeholders:
For implementation guidance, see Implementation Roadmap. For methodology details, see Technical Methodology.
Content Area | Target Audience | Reading Time |
---|---|---|
Key Interventions | Health policy makers, administrators | 5 minutes |
Technical Methodology | Health economists, researchers | 15 minutes |
Strategic Integration | Policy makers, health authorities | 10 minutes |
Implementation Guide | Technical teams, data scientists | 20 minutes |
The UAE faces significant health challenges with non-communicable diseases (NCDs) occurring earlier than global averages, with first cardiac events at age 45 versus the global average of 55-65 years. This framework provides economic evidence that strategic prevention investments can address this challenge while generating substantial returns.
Outcome Measure | 10-Year Projection | Clinical Impact |
---|---|---|
Return on Investment | 157% | AED 20.4B investment → AED 52.4B benefit |
Premature Deaths Averted | 16,325 | Population health improvement |
Major Events Prevented | 158,080 | Healthcare system capacity relief |
Quality-Adjusted Life Years | 326,280 | Population wellbeing enhancement |
The analysis is based on UAE-specific epidemiological data and international clinical trial evidence, validated through 10,000-iteration probabilistic sensitivity analysis, and aligned with national health strategies.
Target Population: 500,000 high-risk adults
Economic Outcome: 180% ROI, AED 61,400 per QALY
Intervention | Annual Cost | Evidence Base | 10-Year Impact |
---|---|---|---|
Generic statin therapy | AED 500-1,000 per person | Meta-analysis showing 25% event reduction | 12,450 events prevented |
Population salt reduction | AED 50M national program | WHO documentation of 12:1 ROI | 3,120 deaths averted |
Risk factor management | AED 800 per person annually | UAE data: 22.4% young adult hypertension | AED 7.2B economic benefit |
Target Population: 750,000 pre-diabetic adults
Economic Outcome: 110% ROI, AED 32,100 per QALY
Intervention | Program Cost | Evidence Base | 10-Year Impact |
---|---|---|---|
Intensive lifestyle intervention | AED 1,890 per program | Diabetes Prevention Program: 58% risk reduction | 127,500 cases prevented |
Metformin therapy | AED 300 per person annually | DPP trial: 31% reduction in high-risk groups | 45,900 complications avoided |
Digital health support | AED 240 per person annually | UAE pilot study: 67% engagement rate | AED 8.9B economic benefit |
Target Population: 1.1M eligible adults
Economic Outcome: 85% ROI, AED 42,250 per QALY
Screening Method | Cost per Test | Evidence Base | 10-Year Impact |
---|---|---|---|
FIT-first colorectal screening | AED 100-200 | NordICC trial: 18% mortality reduction | 5,200 early detections |
Enhanced mammography | AED 500-1,000 | Meta-analysis: 20% mortality reduction | 3,300 early detections |
Combined FIT and liquid biopsy | AED 800 combined | Shield test: 83% sensitivity | 3,100 deaths prevented |
Target Population: 234,000 at-risk adults
Economic Outcome: 84% ROI, cost-saving for population aged 75+
Intervention | Screening Cost | Evidence Base | 10-Year Impact |
---|---|---|---|
DEXA with targeted treatment | AED 500-1,000 per scan | Tosteson et al.: Cost-saving for age 75+ | 10,530 fractures prevented |
Risk-stratified approach | AED 200 per assessment | USPSTF Grade B recommendation | AED 661M net savings |
Target Population: 30,000 high-risk elderly
Economic Outcome: 60% ROI, AED 48,900 per QALY
Intervention | Annual Cost | Evidence Base | 5-Year Impact |
---|---|---|---|
MIND diet program | AED 2,400 per person annually | Harvard cohort: 53% risk reduction | 2,700 onsets delayed |
Multidomain intervention | AED 3,600 per person annually | FINGER trial: Cognitive benefit demonstrated | 35% caregiver burden reduction |
Blood biomarker screening | AED 800 per test | P-tau217: $55,194 per QALY | AED 404M net benefit |
This analysis employs disease-specific Markov cohort models with validated health state transitions following the progression: Healthy → At-Risk → Diagnosed → Complications → Death.
Parameter | International Standard | UAE Adaptation | Data Source |
---|---|---|---|
CVD Onset Age | 55-65 years | 45 years | Al-Shamsi et al., 2022 |
Healthcare Inflation | 3-4% annually | 5.8% annually | Dubai Health Authority, 2024 |
Quality of Life Valuation | Generic EQ-5D | UAE-specific EQ-5D-5L | Papadimitropoulos et al., 2024 |
Diabetes Complication Costs | Standard progression | 9.4x cost increase | Al-Maskari et al., 2010 |
The UAE’s National Genome Strategy provides opportunities for enhanced prevention approaches:
Technology | Current Practice | Precision Enhancement | Estimated ROI Impact |
---|---|---|---|
Statin Therapy | Standard dosing | SLCO1B1 genetic testing | 15% adherence improvement |
Cancer Screening | Conventional methods | cfDNA liquid biopsy integration | 40% uptake increase in hesitant populations |
Alzheimer’s Assessment | Expensive amyloid-PET imaging | P-tau217 blood biomarkers | $55,194 per QALY versus imaging |
The ROI framework provides foundational architecture for precision medicine scenario modeling with customizable parameters for future technology integration.
Limitation | Potential Impact | Mitigation Strategy |
---|---|---|
Markov Cohort Approach | Assumes homogeneous population behavior | Probabilistic sensitivity analysis across demographic strata |
Annual Cycle Length | May not capture short-term clinical events | Conservative effectiveness estimates |
Health State Simplification | Disease progression more complex than modeled | Validated transition probabilities from literature |
These limitations are inherent to health economic modeling and do not invalidate the framework’s utility for strategic decision-making. The model provides the best available evidence while acknowledging uncertainty. Regular parameter updates and real-world validation will enhance accuracy over time.
Recommendation: Use results for directional guidance and relative comparisons rather than precise budget planning. Conduct sensitivity analysis on key assumptions relevant to specific implementation contexts.
UAE Health Initiative | Framework Alignment | Quantified Contribution |
---|---|---|
“We the UAE 2031” | Prevention-focused healthcare vision | 157% ROI demonstration |
UAE Centennial 2071 | Long-term prosperity through health investment | 326,000 QALYs over 10 years |
MOHAP Strategic Plan | Integrated preventive healthcare approach | Evidence-based resource allocation |
Healthy Lifestyles Policy (2022) | NCD prevention targeting | 158,000 disease events prevented |
Coordinating Bodies: Ministry of Health and Prevention (MOHAP), Dubai Health Authority (DHA), Department of Health Abu Dhabi (DoH)
# Repository Setup
git clone https://github.com/P-BioMedLab/uae-preventive-health-framework.git
cd uae-preventive-health-framework
python -m http.server 8000
# Access via http://localhost:8000
Deliverables:
Scope: Single health authority partnership (DHA or SEHA)
Target Outcome: Standardized HTA tool for budget decisions exceeding AED 10M
Issue Category | Resolution Approach | Contact Method |
---|---|---|
Calculator functionality | Browser compatibility check/cache clearing | Repository Issues |
Parameter interpretation | Documentation in /data/ directory | Academic team |
Policy integration | HTA compliance section review | Institutional partnerships |
Stakeholder Group | Primary Application | Representative Use Case |
---|---|---|
Health Ministers | Evidence-based budget optimization | ROI analysis for AED 500M prevention investment |
Health Authorities | HTA-compliant program prioritization | Cost-effectiveness threshold analysis |
Insurance Providers | Risk-based pricing optimization | Prevention program impact on actuarial models |
Corporate Health Programs | Employee health investment justification | Business case development for comprehensive prevention |
Public Health Advocates | Enhanced preventive service access | Evidence-based program advocacy |
/outputs/ # Interactive analytical tools (HTML/JavaScript)
├── uae_prevention_roi_calculator.html
├── uae_health_dashboard.html
└── uae_prevention_presentation.html
/data/ # Model parameters and assumptions
/scripts/ # Data processing utilities
/docs/ # Extended documentation
├── TECHNICAL_METHODS.md
├── POLICY_INTEGRATION.md
└── IMPLEMENTATION_GUIDE.md
CITATION.cff # GitHub citation metadata
LICENSE # AGPL-3.0-or-later (code)
LICENSE-DOCS # CC BY 4.0 (documentation)
LICENSE-DATA # CC BY 4.0 (data/parameters)
README.md # This documentation
B., P. (2025). UAE Preventive Health Investment Framework: A Data-Driven Economic Evaluation. GitHub.
https://github.com/P-BioMedLab/uae-preventive-health-framework
@misc{P_uae_prevention_framework_2025,
title={UAE Preventive Health Investment Framework: A Data-Driven Economic Evaluation},
author={B., P.},
year={2025},
url={https://github.com/P-BioMedLab/uae-preventive-health-framework},
note={Code: AGPL-3.0-or-later, Documentation: CC BY 4.0, Data: CC BY 4.0}
}
This repository employs a multi-license approach:
User Profile | Recommended Starting Point | Estimated Time |
---|---|---|
Senior Health Executive | Interactive Calculator + Study Overview | 10 minutes |
Health Economist | Technical Methodology + Interactive Calculator | 25 minutes |
Policy Analyst | Strategic Integration + Implementation Guide | 20 minutes |
Research Developer | Repository clone + Documentation review | 45 minutes |
This framework provides evidence-based support for preventive health investment decisions in the UAE context. The analysis demonstrates substantial economic returns alongside significant population health benefits. The open-source methodology enables adaptation for institutional use while maintaining analytical rigor.
Implementation should begin with pilot programs to validate real-world effectiveness before system-wide deployment. Regular parameter updates and ongoing validation will enhance the framework’s accuracy and utility for health policy decision-making.
License Information:
Code: AGPL-3.0-or-later | Documentation: CC BY 4.0 | Data: CC BY 4.0
SPDX-License-Identifier: AGPL-3.0-or-later
Al Sayah, F., Roudijk, B., El Sadig, M., Al Mannaei, A., Farghaly, M. N., Dallal, S., Kaddoura, R., Metni, M., Elbarazi, I., & Kharroubi, S. A. (2025). A value set for EQ-5D-5L in the United Arab Emirates. Value in Health, 28(4), 611-621.
Dubai Health Authority. (2024). Health accounts system of Dubai 2023: Annual report. Dubai: Dubai Health Authority.
Sanders, G. D., Neumann, P. J., Basu, A., Brock, D. W., Feeny, D., Krahn, M., Kuntz, K. M., Meltzer, D. O., Owens, D. K., Prosser, L. A., Salomon, J. A., Sculpher, M. J., Trikalinos, T. A., Russell, L. B., Siegel, J. E., & Ganiats, T. G. (2016). Recommendations for conduct, methodological practices, and reporting of cost-effectiveness analyses: Second Panel on Cost-Effectiveness in Health and Medicine. JAMA, 316(10), 1093-1103. doi:10.1001/jama.2016.12195
Drummond, M. F., Sculpher, M. J., Claxton, K., Stoddart, G. L., & Torrance, G. W. (2015). Methods for the economic evaluation of health care programmes (4th ed.). Oxford University Press.
Knowler, W. C., Barrett-Connor, E., Fowler, S. E., Hamman, R. F., Lachin, J. M., Walker, E. A., Nathan, D. M., & Diabetes Prevention Program Research Group. (2002). Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. New England Journal of Medicine, 346(6), 393-403. doi:10.1056/NEJMoa012512
Bretthauer, M., Løberg, M., Wieszczy, P., Kalager, M., Emilsson, L., Garborg, K., Rupinski, M., Dekker, E., Spaander, M., Bugajski, M., Holme, Ø., Zauber, A. G., Pilonis, N. D., Mroz, A., Kuipers, E. J., Shi, J., Hernán, M. A., Adami, H. O., Regula, J., Hoff, G., & NordICC Study Group. (2022). Effect of colonoscopy screening on risks of colorectal cancer and related death. New England Journal of Medicine, 387(17), 1547-1558. doi:10.1056/NEJMoa2208375
Tosteson, A. N. A., Melton, L. J., Dawson-Hughes, B., Baim, S., Favus, M. J., Khosla, S., & Lindsay, R. L. (2008). Cost-effective osteoporosis treatment thresholds: the United States perspective. Osteoporosis International, 19(4), 437-447. doi:10.1007/s00198-007-0550-6
Chung, D. C., Gray, D. M., Singh, H., Issaka, R. B., Parham, K., Caldwell, S., Ghobrial, J., Zhang, L., & Boardman, L. A. (2024). A cell-free DNA blood-based test for colorectal cancer screening. New England Journal of Medicine, 390(11), 973-983. doi:10.1056/NEJMoa2304714
Al-Maskari, F., El-Sadig, M., & Nagelkerke, N. (2010). Assessment of the direct medical costs of diabetes mellitus and its complications in the United Arab Emirates. BMC Public Health, 10, 679. doi:10.1186/1471-2458-10-679
Al-Awadhi, A. M., Al-Mazrouei, S., Al-Kaabi, J., Al-Maskari, F., & Blair, I. (2023). Economic burden of diabetes mellitus in the UAE: A systematic review. Diabetes Research and Clinical Practice, 198, 110234. doi:10.1016/j.diabres.2023.110234
Elmusharaf, K., Chestnov, O., Jung, J. S., Manandhar, M., Roberts, G., & Atun, R. (2021). Prevention and control of non-communicable diseases in the United Arab Emirates: The case for investment. New York: UNDP/WHO/UNIATF.
Al-Shamsi, S., Regmi, D., & Govender, R. D. (2022). Incidence of cardiovascular disease and its associated risk factors in the at-risk population of the United Arab Emirates: A retrospective study. SAGE Open Medicine, 10, 20503121221093308. doi:10.1177/20503121221093308
World Health Organization. (2023). United Arab Emirates country profile. Geneva: WHO. Retrieved from https://data.who.int/countries/784
International Diabetes Federation. (2024). Diabetes in United Arab Emirates. Brussels: IDF. Retrieved from https://idf.org/our-network/regions-and-members/middle-east-and-north-africa/members/united-arab-emirates/
Aldallal, S., Fasseeh, A., El-Dahiyat, F., Babar, Z. U., Hassali, M. A., & Aljadhey, H. (2024). Thresholds for the value judgement of health technologies in the United Arab Emirates: a consensus approach. BMJ Open, 14(11), e090344. doi:10.1136/bmjopen-2024-090344
Ramsey, L. B., Johnson, S. G., Caudle, K. E., Haidar, C. E., Voora, D., Wilke, R. A., Maxwell, W. D., McLeod, H. L., Krauss, R. M., Roden, D. M., Feng, Q., Cooper-DeHoff, R. M., Gong, L., Klein, T. E., Wadelius, M., & Niemi, M. (2014). The clinical pharmacogenetics implementation consortium guideline for SLCO1B1 and simvastatin-induced myopathy: 2014 update. Clinical Pharmacology & Therapeutics, 96(4), 423-428. doi:10.1038/clpt.2014.125
Palmqvist, S., Janelidze, S., Quiroz, Y. T., Zetterberg, H., Lopera, F., Stomrud, E., Su, Y., Chen, Y., Serrano, G. E., Leuzy, A., Mattsson-Carlgren, N., Strandberg, O., Smith, R., Villegas, A., Sepulveda-Falla, D., Chai, X., Proctor, N. K., Beach, T. G., Blennow, K., Dage, J. L., Reiman, E. M., & Hansson, O. (2020). Discriminative accuracy of plasma phospho-tau217 for Alzheimer disease vs other neurodegenerative disorders. JAMA, 324(8), 772-781. doi:10.1001/jama.2020.12134
Husereau, D., Drummond, M., Augustovski, F., de Bekker-Grob, E., Briggs, A. H., Carswell, C., Caulley, L., Chaiyakunapruk, N., Greenberg, D., Loder, E., Mauskopf, J., Mullins, C. D., Petrou, S., Pwu, R. F., Staniszewska, S., & CHEERS 2022 ISPOR Good Research Practices Task Force. (2022). Consolidated Health Economic Evaluation Reporting Standards 2022 (CHEERS 2022) statement: Updated reporting guidance for health economic evaluations. Value in Health, 25(1), 3-9. doi:10.1016/j.jval.2021.11.1351
Briggs, A., Sculpher, M., & Claxton, K. (2006). Decision modelling for health economic evaluation. Oxford University Press.
Data Sources: All modeling parameters derived from publicly available sources including peer-reviewed literature, government health statistics, WHO/UNDP reports, and validated international cost-effectiveness studies. No proprietary or individual-level data utilized. Complete parameter documentation available in /data/
directory with source attribution.
*UAE Preventive Health Investment Framework | Licensed under AGPL-3.0-or-later (code), CC BY 4.0 (documentation and data) | Academic collaboration welcome* |