uae-preventive-health-framework

UAE Preventive Health Investment Framework

A comprehensive data-driven framework demonstrating 157% return on investment for preventive medicine investments across five major disease areas in the United Arab Emirates.

Interactive Tools and Resources

This framework provides three primary analytical tools for stakeholders:

For implementation guidance, see Implementation Roadmap. For methodology details, see Technical Methodology.

Content Area Target Audience Reading Time
Key Interventions Health policy makers, administrators 5 minutes
Technical Methodology Health economists, researchers 15 minutes
Strategic Integration Policy makers, health authorities 10 minutes
Implementation Guide Technical teams, data scientists 20 minutes

Study Overview and Findings

The UAE faces significant health challenges with non-communicable diseases (NCDs) occurring earlier than global averages, with first cardiac events at age 45 versus the global average of 55-65 years. This framework provides economic evidence that strategic prevention investments can address this challenge while generating substantial returns.

Outcome Measure 10-Year Projection Clinical Impact
Return on Investment 157% AED 20.4B investment → AED 52.4B benefit
Premature Deaths Averted 16,325 Population health improvement
Major Events Prevented 158,080 Healthcare system capacity relief
Quality-Adjusted Life Years 326,280 Population wellbeing enhancement

The analysis is based on UAE-specific epidemiological data and international clinical trial evidence, validated through 10,000-iteration probabilistic sensitivity analysis, and aligned with national health strategies.


Key Interventions Analyzed

1. Cardiovascular Disease Prevention

Target Population: 500,000 high-risk adults
Economic Outcome: 180% ROI, AED 61,400 per QALY

Intervention Annual Cost Evidence Base 10-Year Impact
Generic statin therapy AED 500-1,000 per person Meta-analysis showing 25% event reduction 12,450 events prevented
Population salt reduction AED 50M national program WHO documentation of 12:1 ROI 3,120 deaths averted
Risk factor management AED 800 per person annually UAE data: 22.4% young adult hypertension AED 7.2B economic benefit

2. Type 2 Diabetes Prevention

Target Population: 750,000 pre-diabetic adults
Economic Outcome: 110% ROI, AED 32,100 per QALY

Intervention Program Cost Evidence Base 10-Year Impact
Intensive lifestyle intervention AED 1,890 per program Diabetes Prevention Program: 58% risk reduction 127,500 cases prevented
Metformin therapy AED 300 per person annually DPP trial: 31% reduction in high-risk groups 45,900 complications avoided
Digital health support AED 240 per person annually UAE pilot study: 67% engagement rate AED 8.9B economic benefit

3. Cancer Screening Programs

Target Population: 1.1M eligible adults
Economic Outcome: 85% ROI, AED 42,250 per QALY

Screening Method Cost per Test Evidence Base 10-Year Impact
FIT-first colorectal screening AED 100-200 NordICC trial: 18% mortality reduction 5,200 early detections
Enhanced mammography AED 500-1,000 Meta-analysis: 20% mortality reduction 3,300 early detections
Combined FIT and liquid biopsy AED 800 combined Shield test: 83% sensitivity 3,100 deaths prevented

4. Osteoporosis Prevention

Target Population: 234,000 at-risk adults
Economic Outcome: 84% ROI, cost-saving for population aged 75+

Intervention Screening Cost Evidence Base 10-Year Impact
DEXA with targeted treatment AED 500-1,000 per scan Tosteson et al.: Cost-saving for age 75+ 10,530 fractures prevented
Risk-stratified approach AED 200 per assessment USPSTF Grade B recommendation AED 661M net savings

5. Alzheimer’s Disease Prevention

Target Population: 30,000 high-risk elderly
Economic Outcome: 60% ROI, AED 48,900 per QALY

Intervention Annual Cost Evidence Base 5-Year Impact
MIND diet program AED 2,400 per person annually Harvard cohort: 53% risk reduction 2,700 onsets delayed
Multidomain intervention AED 3,600 per person annually FINGER trial: Cognitive benefit demonstrated 35% caregiver burden reduction
Blood biomarker screening AED 800 per test P-tau217: $55,194 per QALY AED 404M net benefit

Technical Methodology

Model Architecture

This analysis employs disease-specific Markov cohort models with validated health state transitions following the progression: Healthy → At-Risk → Diagnosed → Complications → Death.

Analysis Parameters

UAE-Specific Parameter Calibration

Parameter International Standard UAE Adaptation Data Source
CVD Onset Age 55-65 years 45 years Al-Shamsi et al., 2022
Healthcare Inflation 3-4% annually 5.8% annually Dubai Health Authority, 2024
Quality of Life Valuation Generic EQ-5D UAE-specific EQ-5D-5L Papadimitropoulos et al., 2024
Diabetes Complication Costs Standard progression 9.4x cost increase Al-Maskari et al., 2010

Model Validation and Uncertainty Analysis

Data Sources and Ethics


Precision Medicine Applications

The UAE’s National Genome Strategy provides opportunities for enhanced prevention approaches:

Technology Current Practice Precision Enhancement Estimated ROI Impact
Statin Therapy Standard dosing SLCO1B1 genetic testing 15% adherence improvement
Cancer Screening Conventional methods cfDNA liquid biopsy integration 40% uptake increase in hesitant populations
Alzheimer’s Assessment Expensive amyloid-PET imaging P-tau217 blood biomarkers $55,194 per QALY versus imaging

The ROI framework provides foundational architecture for precision medicine scenario modeling with customizable parameters for future technology integration.


Model Limitations and Assumptions

Limitation Potential Impact Mitigation Strategy
Markov Cohort Approach Assumes homogeneous population behavior Probabilistic sensitivity analysis across demographic strata
Annual Cycle Length May not capture short-term clinical events Conservative effectiveness estimates
Health State Simplification Disease progression more complex than modeled Validated transition probabilities from literature

Detailed Methodological Limitations

These limitations are inherent to health economic modeling and do not invalidate the framework’s utility for strategic decision-making. The model provides the best available evidence while acknowledging uncertainty. Regular parameter updates and real-world validation will enhance accuracy over time.

Recommendation: Use results for directional guidance and relative comparisons rather than precise budget planning. Conduct sensitivity analysis on key assumptions relevant to specific implementation contexts.


Policy Applications and Strategic Alignment

UAE Health Initiative Framework Alignment Quantified Contribution
“We the UAE 2031” Prevention-focused healthcare vision 157% ROI demonstration
UAE Centennial 2071 Long-term prosperity through health investment 326,000 QALYs over 10 years
MOHAP Strategic Plan Integrated preventive healthcare approach Evidence-based resource allocation
Healthy Lifestyles Policy (2022) NCD prevention targeting 158,000 disease events prevented

Health Technology Assessment Integration

Coordinating Bodies: Ministry of Health and Prevention (MOHAP), Dubai Health Authority (DHA), Department of Health Abu Dhabi (DoH)


Implementation Roadmap

Phase 1: Foundation Development (0-6 months)

# Repository Setup
git clone https://github.com/P-BioMedLab/uae-preventive-health-framework.git
cd uae-preventive-health-framework
python -m http.server 8000
# Access via http://localhost:8000

Deliverables:

Phase 2: Pilot Implementation (6-18 months)

Scope: Single health authority partnership (DHA or SEHA)

Target Outcome: Standardized HTA tool for budget decisions exceeding AED 10M

Phase 3: System-Wide Integration (18-36 months)

Technical Support and Troubleshooting

Issue Category Resolution Approach Contact Method
Calculator functionality Browser compatibility check/cache clearing Repository Issues
Parameter interpretation Documentation in /data/ directory Academic team
Policy integration HTA compliance section review Institutional partnerships

Stakeholder Applications

Stakeholder Group Primary Application Representative Use Case
Health Ministers Evidence-based budget optimization ROI analysis for AED 500M prevention investment
Health Authorities HTA-compliant program prioritization Cost-effectiveness threshold analysis
Insurance Providers Risk-based pricing optimization Prevention program impact on actuarial models
Corporate Health Programs Employee health investment justification Business case development for comprehensive prevention
Public Health Advocates Enhanced preventive service access Evidence-based program advocacy

Repository Structure

/outputs/                    # Interactive analytical tools (HTML/JavaScript)
├── uae_prevention_roi_calculator.html
├── uae_health_dashboard.html
└── uae_prevention_presentation.html

/data/                       # Model parameters and assumptions
/scripts/                    # Data processing utilities
/docs/                       # Extended documentation
├── TECHNICAL_METHODS.md
├── POLICY_INTEGRATION.md
└── IMPLEMENTATION_GUIDE.md

CITATION.cff                 # GitHub citation metadata
LICENSE                      # AGPL-3.0-or-later (code)
LICENSE-DOCS                 # CC BY 4.0 (documentation)
LICENSE-DATA                 # CC BY 4.0 (data/parameters)
README.md                    # This documentation

Citation and Academic Standards

Standard Citation Format

B., P. (2025). UAE Preventive Health Investment Framework: A Data-Driven Economic Evaluation. GitHub.
https://github.com/P-BioMedLab/uae-preventive-health-framework

BibTeX Format

@misc{P_uae_prevention_framework_2025,
  title={UAE Preventive Health Investment Framework: A Data-Driven Economic Evaluation},
  author={B., P.},
  year={2025},
  url={https://github.com/P-BioMedLab/uae-preventive-health-framework},
  note={Code: AGPL-3.0-or-later, Documentation: CC BY 4.0, Data: CC BY 4.0}
}

Academic Standards Compliance


License Information

This repository employs a multi-license approach:


Resources and Documentation


User Guide by Role

User Profile Recommended Starting Point Estimated Time
Senior Health Executive Interactive Calculator + Study Overview 10 minutes
Health Economist Technical Methodology + Interactive Calculator 25 minutes
Policy Analyst Strategic Integration + Implementation Guide 20 minutes
Research Developer Repository clone + Documentation review 45 minutes

Collaboration and Support


Conclusion

This framework provides evidence-based support for preventive health investment decisions in the UAE context. The analysis demonstrates substantial economic returns alongside significant population health benefits. The open-source methodology enables adaptation for institutional use while maintaining analytical rigor.

Implementation should begin with pilot programs to validate real-world effectiveness before system-wide deployment. Regular parameter updates and ongoing validation will enhance the framework’s accuracy and utility for health policy decision-making.


License Information:
Code: AGPL-3.0-or-later | Documentation: CC BY 4.0 | Data: CC BY 4.0
SPDX-License-Identifier: AGPL-3.0-or-later


References

  1. Al Sayah, F., Roudijk, B., El Sadig, M., Al Mannaei, A., Farghaly, M. N., Dallal, S., Kaddoura, R., Metni, M., Elbarazi, I., & Kharroubi, S. A. (2025). A value set for EQ-5D-5L in the United Arab Emirates. Value in Health, 28(4), 611-621.

  2. Dubai Health Authority. (2024). Health accounts system of Dubai 2023: Annual report. Dubai: Dubai Health Authority.

  3. Sanders, G. D., Neumann, P. J., Basu, A., Brock, D. W., Feeny, D., Krahn, M., Kuntz, K. M., Meltzer, D. O., Owens, D. K., Prosser, L. A., Salomon, J. A., Sculpher, M. J., Trikalinos, T. A., Russell, L. B., Siegel, J. E., & Ganiats, T. G. (2016). Recommendations for conduct, methodological practices, and reporting of cost-effectiveness analyses: Second Panel on Cost-Effectiveness in Health and Medicine. JAMA, 316(10), 1093-1103. doi:10.1001/jama.2016.12195

  4. Drummond, M. F., Sculpher, M. J., Claxton, K., Stoddart, G. L., & Torrance, G. W. (2015). Methods for the economic evaluation of health care programmes (4th ed.). Oxford University Press.

  5. Knowler, W. C., Barrett-Connor, E., Fowler, S. E., Hamman, R. F., Lachin, J. M., Walker, E. A., Nathan, D. M., & Diabetes Prevention Program Research Group. (2002). Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. New England Journal of Medicine, 346(6), 393-403. doi:10.1056/NEJMoa012512

  6. Bretthauer, M., Løberg, M., Wieszczy, P., Kalager, M., Emilsson, L., Garborg, K., Rupinski, M., Dekker, E., Spaander, M., Bugajski, M., Holme, Ø., Zauber, A. G., Pilonis, N. D., Mroz, A., Kuipers, E. J., Shi, J., Hernán, M. A., Adami, H. O., Regula, J., Hoff, G., & NordICC Study Group. (2022). Effect of colonoscopy screening on risks of colorectal cancer and related death. New England Journal of Medicine, 387(17), 1547-1558. doi:10.1056/NEJMoa2208375

  7. Tosteson, A. N. A., Melton, L. J., Dawson-Hughes, B., Baim, S., Favus, M. J., Khosla, S., & Lindsay, R. L. (2008). Cost-effective osteoporosis treatment thresholds: the United States perspective. Osteoporosis International, 19(4), 437-447. doi:10.1007/s00198-007-0550-6

  8. Chung, D. C., Gray, D. M., Singh, H., Issaka, R. B., Parham, K., Caldwell, S., Ghobrial, J., Zhang, L., & Boardman, L. A. (2024). A cell-free DNA blood-based test for colorectal cancer screening. New England Journal of Medicine, 390(11), 973-983. doi:10.1056/NEJMoa2304714

  9. Al-Maskari, F., El-Sadig, M., & Nagelkerke, N. (2010). Assessment of the direct medical costs of diabetes mellitus and its complications in the United Arab Emirates. BMC Public Health, 10, 679. doi:10.1186/1471-2458-10-679

  10. Al-Awadhi, A. M., Al-Mazrouei, S., Al-Kaabi, J., Al-Maskari, F., & Blair, I. (2023). Economic burden of diabetes mellitus in the UAE: A systematic review. Diabetes Research and Clinical Practice, 198, 110234. doi:10.1016/j.diabres.2023.110234

  11. Elmusharaf, K., Chestnov, O., Jung, J. S., Manandhar, M., Roberts, G., & Atun, R. (2021). Prevention and control of non-communicable diseases in the United Arab Emirates: The case for investment. New York: UNDP/WHO/UNIATF.

  12. Al-Shamsi, S., Regmi, D., & Govender, R. D. (2022). Incidence of cardiovascular disease and its associated risk factors in the at-risk population of the United Arab Emirates: A retrospective study. SAGE Open Medicine, 10, 20503121221093308. doi:10.1177/20503121221093308

  13. World Health Organization. (2023). United Arab Emirates country profile. Geneva: WHO. Retrieved from https://data.who.int/countries/784

  14. International Diabetes Federation. (2024). Diabetes in United Arab Emirates. Brussels: IDF. Retrieved from https://idf.org/our-network/regions-and-members/middle-east-and-north-africa/members/united-arab-emirates/

  15. Aldallal, S., Fasseeh, A., El-Dahiyat, F., Babar, Z. U., Hassali, M. A., & Aljadhey, H. (2024). Thresholds for the value judgement of health technologies in the United Arab Emirates: a consensus approach. BMJ Open, 14(11), e090344. doi:10.1136/bmjopen-2024-090344

  16. Ramsey, L. B., Johnson, S. G., Caudle, K. E., Haidar, C. E., Voora, D., Wilke, R. A., Maxwell, W. D., McLeod, H. L., Krauss, R. M., Roden, D. M., Feng, Q., Cooper-DeHoff, R. M., Gong, L., Klein, T. E., Wadelius, M., & Niemi, M. (2014). The clinical pharmacogenetics implementation consortium guideline for SLCO1B1 and simvastatin-induced myopathy: 2014 update. Clinical Pharmacology & Therapeutics, 96(4), 423-428. doi:10.1038/clpt.2014.125

  17. Palmqvist, S., Janelidze, S., Quiroz, Y. T., Zetterberg, H., Lopera, F., Stomrud, E., Su, Y., Chen, Y., Serrano, G. E., Leuzy, A., Mattsson-Carlgren, N., Strandberg, O., Smith, R., Villegas, A., Sepulveda-Falla, D., Chai, X., Proctor, N. K., Beach, T. G., Blennow, K., Dage, J. L., Reiman, E. M., & Hansson, O. (2020). Discriminative accuracy of plasma phospho-tau217 for Alzheimer disease vs other neurodegenerative disorders. JAMA, 324(8), 772-781. doi:10.1001/jama.2020.12134

  18. Husereau, D., Drummond, M., Augustovski, F., de Bekker-Grob, E., Briggs, A. H., Carswell, C., Caulley, L., Chaiyakunapruk, N., Greenberg, D., Loder, E., Mauskopf, J., Mullins, C. D., Petrou, S., Pwu, R. F., Staniszewska, S., & CHEERS 2022 ISPOR Good Research Practices Task Force. (2022). Consolidated Health Economic Evaluation Reporting Standards 2022 (CHEERS 2022) statement: Updated reporting guidance for health economic evaluations. Value in Health, 25(1), 3-9. doi:10.1016/j.jval.2021.11.1351

  19. Briggs, A., Sculpher, M., & Claxton, K. (2006). Decision modelling for health economic evaluation. Oxford University Press.


Data Sources: All modeling parameters derived from publicly available sources including peer-reviewed literature, government health statistics, WHO/UNDP reports, and validated international cost-effectiveness studies. No proprietary or individual-level data utilized. Complete parameter documentation available in /data/ directory with source attribution.


*UAE Preventive Health Investment Framework Licensed under AGPL-3.0-or-later (code), CC BY 4.0 (documentation and data) Academic collaboration welcome*